Związane z wiekiem zmiany w układzie arginazy-NO-syntazy w grupie pacjentów z chorobą wieńcową współistniejącą z nadciśnieniem tętniczym
 
 
Więcej
Ukryj
1
Department of family medicine FPGE, Lviv National Medical University of Ukraine
 
 
Autor do korespondencji
Anna Besedina   

Department of family medicine FPGE, Lviv National Medical University of Ukraine, 79059, Liviv Emergency Hospital (KMK LSHMD), Mykolaychuka 9, Liviv, Ukraine
 
 
Ann. Acad. Med. Siles. 2016;70:40-45
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wstęp:
Choroba wieńcowa jest najpowszechniejszą z chorób serca występujących na terenie Europy. Celem pracy było zbadanie intensywności metabolizmu L-argininy dwoma alternatywnymi sposobami (utleniającym przez NOS i nieutleniającym poprzez arginazę) w osoczu krwi pacjentów cierpiących na chorobę wieńcową (ChW) serca, współistniejącą z nadciśnieniem tętniczym (NT), w grupie pacjentów w różnym wieku.

Materiał i metody:
Do badania włączono 50 pacjentów z izolowaną postacią ChW i 42 z ChW współistniejącą z NT. Aktywność NOS została wyznaczona przez anion azotynowy utworzony w reakcji. Aktywność arginazy sprawdzono przez formowanie mocznika.

Wyniki:
Pacjenci w średnim wieku, z izolowaną postacią ChW wykazywali 2,2 razy wyższą całkowitą aktywność NOS w porównaniu ze zdrowymi badanymi w tej samej grupie wiekowej. W przypadku pacjentów z ChW współistniejącą z NT całkowita aktywność NOS była znacząco (2,3 razy) zwiększona w obu grupach wiekowych (w średnim oraz starszym wieku) w porównaniu z osobami zdrowymi w tym samym wieku. U pacjentów z izolowaną postacią ChW aktywność arginazy była 1,5 razy podwyższona u osób w średnim wieku oraz 1,7 razy u starszych niż u osób zdrowych. W wieku średnim i starszym pacjenci ze współistniejącą postacią ChW wraz z NT wykazywali statystycznie znacznie podwyższoną aktywność arginazy – odpowiednio 1,7 oraz 1,8 razy większą niż u zdrowych w tym samym wieku.

Wnioski:
Wykazano, że w grupie pacjentów z izolowaną postacią ChW oraz w przypadku współistnienia ChW i NT aktywność NO-syntazy i arginazy jest wyższa niż u osób zdrowych. Zwiększona aktywność NO-syntazy i arginazy jest bardziej znacząca u pacjentów starszych.

REFERENCJE (31)
1.
Reid C.M., Owen A.J., Freedman B. Coronary artery disease epidemics: not all the same. Medicographia. 2014; 36(1): 11–18.
 
2.
Padial L.R. Optimizing secondary prevention treatment in stable coronary artery disease. Medicographia. 2009; 31(4): 384–391.
 
3.
Rosendorff C., Black H., Cannon C., Gorsh B.J., Gore J., Izzo J.L.Jr., Kaplan N.M., O’Connor C.M., O’Gara P.T., Oparil S. Treatment of hypertension in the prevention and management of ischemic heart disease: a scientific statement from the American Heart Association Council for High Blood Pressure Research and the Councils on Clinical Cardiology and Epidemiology and Prevention. Circulation 2007; 115: 2761–2788.
 
4.
Dudzinski D.M., Igarashi J., Greif D., Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu. Rev. Pharmacol. Toxicol. 2006; 46: 235–276.
 
5.
Félétou M., Vanhoutte P.M. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol. 2006; 291: H985–H1002.
 
6.
Syed R., Biyabani M.U., Prasad S., Deeba F., Jamil K. Correlation and identification of variable number of tandem repeats of eNOS gene in coronary artery disease. Saudi J. Biol. Scien. 2010; 17(3): 209–213.
 
7.
Ming X.F., Barandier C., Viswambharan H., Kwak B.R., Mach F., Mazzolai L., Hayoz D., Ruffieux J., Rusconi S., Montani J.P., Yang Z. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation 2004; 110: 3708–3714.
 
8.
Bachetti T., Comini L., Francolini G., Bastianon D., Valetti B., Cadei M., Grigolato P., Suzuki H., Finazzi D., Albertini A., Curello S., Ferrari R. Arginase pathway in human endothelial cells in pathophysiological conditions. J. Mol. Cell. Cardiol. 2004; 37: 515–523.
 
9.
Berkowitz D.E., White R., Li D., Minhas K.M., Cernetich A., Kim S., Burke S., Shoukas A.A., Nyhan D., Champion H.C., Hare J.M. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 2003; 108(16): 2000–2006.
 
10.
Hein T.W., Zhang C., Wang W., Chang C.I., Thengchaisri N., Kuo L. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J. 2003; 17: 2328–2330.
 
11.
Guevara I., Iwanejko J., Dembińska-Kieć A., Pankiewicz J., Wanat A., Anna P., Gołabek I., Bartuś S., Malczewska-Malec M., Szczudlik A. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin. Chim. Acta 1998; 274: 177–188.
 
12.
Umar S., Van der Laarse A. Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol. Cell. Biochem. 2010; 333(1–2): 191–201.
 
13.
Akizuki E., Akaike T., Okamoto S., Fujii S., Yamaguchi Y., Ogawa M., Maeda H. Role of NO and superoxide in acute cardiac allograft rejection in rats. Proc. Soc. Exp. Biol. Med. 2000; 225(2): 151–159.
 
14.
Gawad S., Yossof M., Soliman A., Abd El-Aziz A.A., El-Shahat F.B., Selim A.K. Expression of inducible nitric oxide synthase gene in diabetic and non-diabetic coronary artery disease patients. Researcher 2011; 3(6): 40–48.
 
15.
Ferreiro C.R., Chagas A.C., Carvalho M.H., Dantas A.P., Scavone C., Souza L.C., Buffolo E., da Luz P.L. Expression of inducible nitric oxide synthase is increased in patients with heart failure due to ischemic disease. Braz. J. Med. Biol. Res. 2004; 37: 1313–1320.
 
16.
Santhanam L., Lim H.K., Lim H.K., Miriel V., Brown T., Patel M., Balanson S., Ryoo S., Anderson M., Irani K., Khanday F., DiCostanzo L., Nyhan D., Hare J.M., Christianson D.W., Rivers R., Shoukas A., Berkowitz D.E. Inducible NO synthase dependent S-nitrosylation and activation of arginase 1 contribute to age – related endothelial dysfunction. Circ. Res. 2007; 101: 692–702.
 
17.
Cuzzocrea S., Mazzon E., Dugo L., Di Paola R., Caputi A.P., Salvemini D. Superoxide: a key player in hypertension. FASEB J. 2004; 18: 94–101.
 
18.
Lubos E., Handy D.E., Loscalzo J. Role of oxidative stress and nitric oxide in atherothrombosis. Front. Biosci. 2008; 13: 5323–5344.
 
19.
Cook S. Coronary artery disease, nitric oxide and oxidative stress: the "Yin-Yang" effect – a Chinese concept for a worldwide pandemic. Swiss Med. Wkly. 2006; 136: 103–113.
 
20.
Lee C.Y., Yen M.H. Nitric oxide and carbon monoxide, collaborative and competitive regulators of hypertension. Chang Gung Med. J. 2009; 32(1): 12–21.
 
21.
Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J. Nutr. 2007; 137(6 Suppl 2): 1616S–1620S.
 
22.
Morris S.M. Recent advances in arginine metabolism: roles and regulation of the arginases. Brit. J. Pharmacol. 2009; 157: 922–930.
 
23.
Durante W., Johnson F.K., Johnson R.A. A critical regulator of nitric oxide synthesis and vascular function. Clin. Exp. Pharmacol. Physiol. 2007; 34: 906–911.
 
24.
Mielczarek-Puta M., Chrzanowska A., Graboń W., Barańczyk-Kuźma A. New insights into arginase. Part II. Role in physiology and pathology. Postepy Hig. Med. Dosw. 2008; 62: 214–221.
 
25.
Li H., Meininger C.J., Hawker J.R.Jr., Haynes T.E., Kepka-Lenhart D., Mistry S.K., Morris S.M.Jr., Wu G. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2001; 280(1): E75–E82.
 
26.
Santhanam L., Christianson L. Nyhan D., Berkowitz D.E. Arginase and vascular aging. J. Appl. Physio. 2008; 105: 1632–1642.
 
27.
Berkowitz D.E. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J. Appl. Physiol. 2009; 107: 1249–1357.
 
28.
White A.R., Ryoo S., Li D., Champion H.C., Steppan J., Wang D., Nyhan D., Shoukas A.A., Hare J.M., Berkowitz D.E. Knockdown of arginase I restores NO signaling in the vasculature of old rats. Hypertension 2006; 47(2): 245–251.
 
29.
Pernow J., Jung C. Arginase as a potential target in the treatment of cardiovascular disease: Reversal of arginine steal? Cardiovasc. Res. 2013; 98(3): 334–343.
 
30.
Ryoo S., Gupta G., Benjo A., Lim H.K., Camara A., Sikka G., Lim H.K., Sohi J., Santhanam L., Soucy K., Tuolay E., Baraban E., Ilies M., Gerstenblith G., Nyhan D., Shoukas A., Christianson D.W., Alp N.J., Champion H.C., Huso D., Berkowitz D.E. Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ. Res. 2008; 102(8): 923–932.
 
31.
Shemyakin A., Kövamees O., Rafnsson A. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation 2012; 126(25): 2943–2950.
 
eISSN:1734-025X
Journals System - logo
Scroll to top