Rola wybranych polimorfizmów genu MGMT w rozwoju chorób nowotworowych
 
Więcej
Ukryj
1
Katedra i Zakład Biologii Medycznej i Molekularnej, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Autor do korespondencji
Paweł Kiczmer   

Katedra i Zakład Biologii Medycznej i Molekularnej, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
 
 
Ann. Acad. Med. Siles. 2017;71:378-382
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Materiał genetyczny komórki jest nieustannie narażony na działanie czynników mutagennych. Odpowiednie mechanizmy chroniące przed szkodliwym wpływem mutagenów są niezwykle ważne dla prawidłowego funkcjonowania oraz kontroli proliferacji komórek. Jednym z mechanizmów naprawczych jest działanie enzymu MGMT, który odpowiada za ochronę DNA komórki przed czynnikami alkilującymi. Różnice w aktywności enzymu, wynikające z występowania wielu odmian polimorficznych jego genu, mogą prowadzić niekiedy do zwiększonego ryzyka zachorowania na nowotwory. Tematem pracy jest omówienie roli niektórych polimorfizmów genu MGMT w rozwoju oraz terapii chorób nowotworowych.
REFERENCJE (29)
1.
Zhong Y., Huang Y., Huang Y., Zhang T., Ma C., Zhang S., Fan W., Chen H., Qian J., Lu D. Effects of O6-methylguanine-DNA methyltransferase (MGMT) polymorphisms on cancer: a meta-analysis. Mutagenesis 2010; 25(1): 83–95.
 
2.
Sharma S., Salehi F., Scheithauer BW., Rotondo F., Syro L.V., Kovacs K. Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Res. 2009; 29(10): 3759–3768.
 
3.
Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer. 2004; 4(4): 296–307.
 
4.
Shaulian E., Karin M. AP-1 as a regulator of cell life and death. Nat. Cell. Biol. 2002; 4(5): E131–136.
 
5.
Williams T., Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes. Dev. 1991; 5(4): 670–682.
 
6.
Ahmadian A., Gharizadeh B., Gustafsson A.C., Sterky F., Nyrén P., Uhlén M., Lundeberg J. Single-nucleotide polymorphism analysis by pyrosequencing. Anal. Biochem. 2000; 280(1): 103–110.
 
7.
Bugni J.M., Han J., Tsai M.S., Hunter D.J., Samson L.D. Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 2007; 6(8): 1116–1126.
 
8.
Egyhazi S., Ma S., Smoczynski K., Hansson J., Platz A., Ringborg U. Novel O6-methylguanine-DNA methyltransferase SNPs: a frequency comparison of patients with familial melanoma and healthy individuals in Sweden. Hum. Mutat. 2002; 20(5): 408–409.
 
9.
Liu K., Jiang Y. Polymorphisms in DNA Repair Gene and Susceptibility to Glioma: A Systematic Review and Meta-Analysis Based on 33 Studies with 15 SNPs in 9 Genes. Cell. Mol. Neurobiol. 2017; 37(2): 263–274.
 
10.
Zienolddiny S., Campa D., Lind H., Ryberg D., Skaug V., Stangeland L., Phillips D.H., Canzian F., Haugen A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006; 27(3): 560–567.
 
11.
Liu J., Zhang R., Chen F., Yu C., Sun Y., Jia C., Zhang L., Salahuddin T., Li X., Lang J., Song X. MGMT Leu84Phe polymorphism contributes to cancer susceptibility: evidence from 44 case-control studies. PLoS One 2013; 8(9): e75367.
 
12.
Du L., Wang H., Xiong T., Ma Y, Yang J, Huang J, Zeng D, Wang X, Huang H, Huang J. The polymorphisms in the MGMT gene and the risk of cancer: a meta-analysis. Tumour. Biol. 2013; 34(5): 3227–3237.
 
13.
Lu Y., Cao M., Gao K., Jiang J., Shi X. The role of O(6)-methylguanine-DNA methyltransferase polymorphisms in colorectal cancer susceptibility: a meta analysis. Int. J. Clin. Exp. Med. 2015; 8(1): 791–799.
 
14.
Huang W.Y., Olshan A.F., Schwartz S.M., Berndt S.I., Chen C., Llaca V., Chanock S.J., Fraumeni J.F. Jr, Hayes R.B. Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis. Cancer Epidemiol. Biomarkers Prev. 2005; 14(7): 1747–1753.
 
15.
Kaur T.B., Travaline J.M, Gaughan J.P., Richie J.P. Jr, Stellman S.D., Lazarus P. Role of polymorphisms in codons 143 and 160 of the O6-alkylguanine DNA alkyltransferase gene in lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 2000; 9(3): 339–342.
 
16.
Doecke J., Zhao Z.Z., Pandeya N., Sadeghi S., Stark M., Green A.C., Hayward N.K., Webb P.M., Whiteman D.C. Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. Int. J. Cancer 2008; 123(1): 174–180.
 
17.
Li C., Liu J., Li A., Qian L., Wang X., Wei Q., Zhou J., Zhang Z. Exon 3 polymorphisms and haplotypes of O6-methylguanine-DNA methyltransferase and risk of bladder cancer in southern China: a case-control analysis. Cancer Lett 2005; 227(1): 49–57.
 
18.
Ma W.J., Lv G.D., Zheng S.T., Huang C.G., Liu Q., Wang X., Lin R.Y., Sheyhidin I., Lu X.M. DNA polymorphism and risk of esophageal squamous cell carcinoma in a population of North Xinjiang, China. World J. Gastroenterol. 2010; 16(5): 641–647.
 
19.
Fogli A., Chautard E., Vaurs-Barriere C., Pereira B., Müller-Barthélémy M., Court F., Biau J., Pinto A.A., Kémény J.L., Khalil T., Karayan-Tapon L., Verrelle P., Costa B.M., Arnaud P. The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients' survival. Carcinogenesis 2016; 37(2): 169–176.
 
20.
Chodurek E., Gołąbek K., Orchel J., Orchel A., Dzierżewicz Z. Znaczenie epigenetyki w patogenezie czerniaka. Ann. Acad. Med. Siles. 2012; 66(3): 44–56.
 
21.
Ogino S., Hazra A., Tranah G.J., Kirkner G.J., Kawasaki T., Nosho K., Ohnishi M., Suemoto Y., Meyerhardt J.A., Hunter D.J., Fuchs C.S. MGMT germline polymorphism is associated with somatic MGMT promoter methylation and gene silencing in colorectal cancer. Carcinogenesis 2007; 28(9): 1985–1990.
 
22.
Esteller M., Herman J.G. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 2004; 23(1): 1–8.
 
23.
Rapkins R.W., Wang F., Nguyen H.N., Cloughesy T.F., Lai A., Ha W., Nowak A.K., Hitchins M.P., McDonald K.L. The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide. Neuro. Oncol. 2015; 17(12): 1589–1598.
 
24.
Kristensen L.S., Nielsen H.M., Hager H., Hansen L.L. Methylation of MGMT in malignant pleural mesothelioma occurs in a subset of patients and is associated with the T allele of the rs16906252 MGMT promoter SNP. Lung Cancer 2011; 71(2): 130–136.
 
25.
Lan F., Yang Y., Han J., Wu Q., Yu H., Yue X. Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int. J. Oncol. 2016; 48(2): 559–568.
 
26.
Huang H., Lin H., Zhang X., Li J. Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-kappaB-dependent pathway. Oncol. Rep. 2012; 27(6): 2050–2056.
 
27.
Onerci Celebi O., Tezel G.G., Hosal A.S., Cengiz M., Gullu I.H., Hayran M. Detection of O6-methylguanine-DNA methyltransferase gene promoter region methylation pattern using pyrosequencing and the effect of methylation pattern on survival, recurrence, and chemotherapy sensitivity in patients with laryngeal cancer. Pathol. Res. Pract. 2016; 212(5): 456–462.
 
28.
Dikshit R.P., Gillio-Tos A., Brennan P., De Marco L., Fiano V., Martinez-Peñuela J.M., Boffetta P., Merletti F. Hypermethylation, risk factors, clinical characteristics, and survival in 235 patients with laryngeal and hypopharyngeal cancers. Cancer 2007; 110(8): 1745–1751.
 
29.
 
eISSN:1734-025X
Journals System - logo
Scroll to top